
1

How blocking third-party
cookies can fix the web's
security model
Artur Janc, David Dworken
Google Information Security Engineering

#LocoMocoSec 2024

2

Background: A simplified model of web security

Three broad classes of security problems in web applications:

1. (lack of) Encryption: Easy to build an application without encryption-in-transit

○ Vulnerabilities: Use of HTTP; mixed content/scripting; non-Secure cookies; PKI concerns

2. Injections: Core building blocks (HTML, URLs, JS) allow mixing code & data

○ Vulnerabilities: Various flavors of XSS; prototype pollution; DOM clobbering

3. (lack of) Isolation: Authenticated interactions with any cross-origin endpoint

○ Vulnerabilities: Cross-site request forgery (CSRF); clickjacking; XS-Search; XS-Leaks; XSSI

Most client-side web application vulnerabilities can be traced back to one of these root causes.

3

Three broad classes of security problems in web applications:

1. (lack of) Encryption: Easy to build an application without encryption-in-transit

○ Vulnerabilities: Use of HTTP; mixed content/scripting; non-Secure cookies; PKI concerns

2. Injections: Core building blocks (HTML, URLs, JS) allow mixing code & data

○ Vulnerabilities: Various flavors of XSS; prototype pollution; DOM clobbering

3. (lack of) Isolation: Authenticated interactions with any cross-origin endpoint

○ Vulnerabilities: Cross-site request forgery (CSRF); clickjacking; XS-Search; XS-Leaks; XSSI

Most client-side web application vulnerabilities can be traced back to one of these root causes.

Background: A simplified model of web security

4

The root cause of many of the web's isolation problems lies in its cookie model.

5

Cookies, in one slide

A simple client-side store of information (commonly, authentication tokens) for a host or domain.

● Cookie attributes: path, domain, expires, max-age, Secure, HttpOnly
● SameSite attribute

○ None
○ Lax
○ Strict

● Cookie prefixes
○ __Secure
○ __Host

Ambient authority: In the original cookie model, once set, the cookie is always attached on requests to
matching destinations, regardless of which site initiates the request.

 Set-Cookie: NAME=value; domain=.example.org; path=/; Secure;

6

https://victim.com

https://victim.com/image.png

https://evil.com

https://victim.com/image.png

victim.com server
handling a request for /image.png

A third-party cookie!

7

A few completely safe code examples

<form action="/transfer">
 <input name="target" value="mkwst" />
 <input name="amount" value="10" />

<button onclick="deleteAccount()">
 Delete account</button>

w("Content-Type: text/javascript")
w("var data = {'user':'${name}'}")

if search_result:
 log_to_db(search_query)
 return search_result

Our website:

form submission

clickable button

API endpoint

search functionality

8

<form action="/transfer">
 <input name="target" value="mkwst" />
 <input name="amount" value="10" />

<button onclick="deleteAccount()">
 Delete account</button>

w("Content-Type: text/javascript")
w("var data = {'user':'${name}'}")

if search_result:
 log_to_db(search_query);
 return search_result

<form action="//victim/transfer">
<input name="target" value="bozo" />
<input name="amount" value="1000" />

<iframe src="//victim/settings"
 style="opacity: 0"></iframe>

<script src="//victim/json" />
<script>alert(data)</script>

<script>t=performance.now()</script>
<img src="//victim/search?q=secret"
 onerror="t2=performance.now()" />

 CSRF

 clickjacking

 XSSI

 XS-Search / XS-Leak

Our website: evil.com:

A few completely safe code examples

9

Addressing this in the web platform would fundamentally improve security.

10

Browser efforts to limit
third-party cookies

11

12

1313

All browsers committed to restricting third-party cookies

14

What's the problem with just completely disabling third-party cookies?

15

16

Client-side
Storage

HTTP cookies

Browser world:
Intentional identifiers

https://publisher1.com https://publisher2.com

adtech.biz

https://adtech.biz https://adtech.biz

Fantastic identifiers and where to find them

17

HTTP cache Network state Browsing history

Browser world:
Accidental identifiers

https://publisher1.com https://publisher2.com

adtech.biz

https://adtech.biz https://adtech.biz

Fantastic identifiers and where to find them

18

Device world

Device
fingerprint

IP address

https://publisher1.com https://publisher2.com

adtech.biz

https://adtech.biz https://adtech.biz

Fantastic identifiers and where to find them

19

User world

Email, phone #

https://publisher1.com https://publisher2.com

adtech.biz

https://adtech.biz https://adtech.biz

Fantastic identifiers and where to find them

20

Removing third-party cookies from the web in 3 easy steps

1. Limit the availability of alternative tracking mechanisms
○ If trackers move to non-cookie-based alternatives, the result would

be net negative for privacy. We need to prevent this from happening.

2. Build new APIs to replace legitimate use cases of third-party cookies
○ Ads functionality with protections against cross-site tracking
○ Account for every reasonable use of third-party cookies

3. Actually restrict third-party cookies
○ … but provide escape hatches in case things break for users

This requires fundamental changes to the web platform, which can be a
security win if we pay attention to the details.

21

Non-advertising major uses of third-party cookies

Identity
Federation

● Many websites use identity federation (e.g. “Login with [Provider]”) in

a way that requires third-party cookies

User-Content
Serving

● Several classical solutions* for securely serving untrusted content rely

on sandbox domains (e.g. googleusercontent.com) which can require

third-party cookies for authentication

Anti-fraud ● Combating fraud online can often benefit from using third-party

cookies to better analyze behavior across sites (e.g. CAPTCHAs)

Many More ● Many more usages of third-party cookies including payments flows

(3-D Secure), cross-site CORS requests, website analytics, and more

*goo.gle/modern-user-content-serving

http://goo.gle/modern-user-content-serving

22

Privacy goal: Robustly protect users from cross-site tracking using cookies or
alternative web-based tracking mechanisms

Security goal: Build fundamental isolation boundaries that protect web services
from common vulnerabilities

��

23

How these changes
help web security

24

<form action="/transfer">
 <input name="target" value="mkwst" />
 <input name="amount" value="10" />

<button onclick="deleteAccount()">
 Delete account</button>

w("Content-Type: text/javascript")
w("var data = {'user':'${name}'}")

if search_result:
 log_to_db(search_query);
 return search_result

<form action="//victim/transfer">
<input name="target" value="urs" />
<input name="amount" value="1000" />

<iframe src="//victim/settings"
 style="opacity: 0"></iframe>

<script src="//victim/json" />
<script>alert(data)</script>

<script>t=performance.now()</script>
<img src="//victim/search?q=secret"
 onerror="t2=performance.now()" />

 CSRF

 clickjacking

 XSSI

 XS-Search / XS-Leak

Our website: evil.com:

Third-party cookies are the original sin of the internet

25

How 3PCD fixes clickjacking

https://bank.com

Transfer Money

Send Money to ddworken@Cancel

26

How 3PCD fixes clickjacking

https://evil.com

<iframe src=’https://bank.com’>

Transfer Money

Send Money to
ddworken@Cancel

27

How 3PCD fixes clickjacking

https://evil.com

<iframe src=’https://bank.com’>

Send Money to
ddworken@Cancel More rainbows
and puppies!

28

How 3PCD fixes clickjacking

https://evil.com

<iframe src=’https://bank.com’>

Send Money to
ddworken@Cancel More rainbows
and puppies!

Since bank.com and evil.com
are cross-site, this is a

third-party cookie

29

How 3PCD fixes clickjacking

https://evil.com

<iframe src=’https://bank.com’>

Please log in to
continue

Without third-party
cookies, the iframe is
unauthenticated, and

thus clickjacking is
fixed!

30

Fixing individual vulnerabilities with tools
like X-Frame-Options and
Cross-Origin-Resource-Policy

Fixing clickjacking, XSRF, and XS-Leaks
by deprecating third-party cookies

31

Interlude: "Accidental" security benefits of cross-site tracking protections

32

3PCD is about more than just third-party cookies

Deprecating
third-party cookies

Eliminating other types
of cross-site storage

(localStorage,
workers, IndexedDB)

Partitioning global
state (HTTP cache,
network state, etc.)

Robust security and
privacy isolation

3333

HTTP Cache Partitioning

foo.com

bar.com

3434

HTTP Cache and XS-Leaks

email.com/search?q=...

No Results Found

evil.com

1. Open popup to email.com/search?q=...
2. Load email.com/noresults.png

3. Check if it is present in the cache
4. Leak email data! 😈

3535

HTTP Cache and XS-Leaks

3636

HTTP Cache Partitioning

foo.com

bar.com

3737

HTTP Cache Partitioning

email.com/search?q=...

No Results Found

evil.com

1. Open popup to email.com/search?q=...
2. Load email.com/noresults.png

3. Check if it was loaded from the cache
4. ❓❓❓

38

Fixing individual vulnerabilities with tools
like X-Frame-Options and
Cross-Origin-Resource-Policy

Fixing clickjacking, XSRF, and XS-Leaks
by deprecating third-party cookies

Fixing even more vulnerabilities by
partitioning all global state

3939

Partition all the things!

Network-state partitioning

Browsers contain all kinds of
shared state in the network stack:

● Socket pools, DNS cache,
TLS resumption, HSTS, etc

Partition it so that it can’t be used
for covert tracking

Client-side state partitioning

Sites can store state in the
client-side via localStorage (and
other mechanisms)

Partition it so that it can’t be used
as a cross-site cookie replacement

:visited partitioning

Links are colored based on browser
history

Partition browsing history on
source-site

Fixes XS-Leaks that rely on this
shared state

Fixes vulnerabilities that are
enabled by client-side auth

Fixes browsing history leaks

40

Back to cookies!

41

How should we block
third-party cookies?

42

Allowing cookies for requests to top-level site

All requests for subresources that match the top-level site will carry that site's cookies

https://www.example.org

https://accounts.example.org/avatar.png

https://foobar.com/foo.png

https://accounts.example.org/avatar.png

https://foobar.com/foo.png

43

Problem: Embedding cross-site iframes is common

● Ads
● Conversion tracking frames
● Sanitized HTML allowing <iframe>s
● Embedded widgets from XSS-able domains
● …

In the "Allowing cookies for requests to top-level site" model, any document with such an iframe would
remove its entire site's web isolation protections.

We don't want this.

https://www.example.org

https://evil.site

44

Allowing cookies for requests to top-level site

All requests for subresources that match the top-level site will carry that site's cookies

45

The SameSite=Lax-by-default model

Uses the "site for cookies" algorithm from RFC6265bis, omitting sending cookies if the initiating document is
cross-site, or there are cross-site ancestors or redirects.

*

[*] Chrome's implementation departs from this model:
- SameSite=None is still available (!)
- The "2-minute Lax+POST" mitigation
- Cross-site → same-site redirects (crbug/1215167)

https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/#section-5.2
https://bugs.chromium.org/p/chromium/issues/detail?id=1215167

46

Answer: Bring the web closer to the SameSite=Lax* model

[*] Lax-allowing-unsafe: Also allow cookies with top-level POST requests

What this would give us: A platform-enforced guarantee against loading authenticated cross-site
resources or iframes.

All browsers are fairly close to getting there.

What browsers would need to do:
● Complete the third-party cookie deprecation process & fix known gaps
● Switch to the Lax-allowing-unsafe model

● Everyone: Agree on handling remaining under-defined behaviors…

https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/#section-5.5.7.2
https://privacysandbox.com/open-web/#the-privacy-sandbox-timeline
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/#section-5.5.7.2

47

Will 3PCD magically
solve isolation for us?

48

4949

Navigational POST requests

https://evil.com

<form action="https://victim.com/transfer" method=POST>
 <input name="target" value="ddworken" />
 <input name="amount" value="10" />

POST victim.com/transfer
Cookie: AUTH=...

target=ddworken&amount=10

😱😱😱
Allows evil.com to send a

credentialed top-level request to any
website to exploit certain

cookie-based attacks (XSRF)

?
No currently ongoing work to fix

or improve this

https://evil.example
http://top.example

5050

Heuristics

😱😱😱
If the user can be convinced to click on

victim.example then it becomes
vulnerable to third-party cookie based

attacks

✔
Fixed at some point when browsers deprecate these

heuristics

http://victim.example

5151

User Bypass

https://evil.example

Click on this toggle
to allow rainbows

and puppies!

😱
If the user can be convinced to trigger

User Bypass on evil.example then it can
attack any website via third-party cookie

based attacks

?
Maybe user bypass will go away or have

increased friction at some point

https://evil.example
http://victim.example

5252

Enterprise policies

5353

Enterprise policies

😱
Enterprise policies can allow all
kinds of third-party cookies and

unintentionally re-enable all kinds
of vulnerabilities

?
Likely never getting fully fixed, but we can at least
document this risk and encourage people to use

enterprise policies securely

54

Isolation best practices
for a modern web

55

Removing third-party cookies aims to provide default isolation for all webapps.

But until this is enforced in all browsers, there are some best practices to follow…

56

Creating cookies: Explicitly set them as SameSite=Lax

Today, web browsers' default cookie behaviors are less safe than SameSite=Lax:

● Safari and Firefox allow any iframe embedded on your site to make
credentialed requests to any same-site endpoint.

● All browsers allow POST requests with the cookie via top-level navigations.

Setting an explicit SameSite=Lax attribute will enforce safer cookie behavior.

 Set-Cookie: __Host-SESSION=[value]; path=/; SameSite=Lax; Secure;

Bonus: This will also make your application compatible with 3P cookie deprecation.

57

58

Use SameSite=None cookies only as a last resort

You might need to receive authenticated cross-site requests if you:

● Have multiple domains which interact with each other (e.g. use CORS APIs
or embedded iframes that maintain logged-in functionality).

● Provide iframes that need to be embedded on any site and use the
Storage Access API for authentication.

Tip: Create a second auth cookie that only works for cross-site endpoints.

 Set-Cookie: SESSION=[value]; path=/; SameSite=Lax; Secure;
 Set-Cookie: SESSION_3P=[value]; path=/; SameSite=None; Secure;

59

Opt-in protections: Fetch Metadata Request Headers &
 Cross-Origin Opener Policy

Fetch Metadata headers (Sec-Fetch-Site & co.) give servers reliable information about
the source of all incoming HTTP requests and allow building general isolation policies.
● web.dev/fetch-metadata

Cross-Origin Opener Policy (COOP) disables access to window properties.
● http.dev/cross-origin-opener-policy

Both are reliably supported by all major browsers:

https://web.dev/articles/fetch-metadata
https://http.dev/cross-origin-opener-policy

60

Safely Migrating to a Post-3P-Cookie World

Storage Access API (document.requestStorageAccess() & Activate-Storage-Access)
allows an iframe to request its first-party cookies/storage if the user allows.

● Tip: Only use it on endpoints that legitimately need to be loaded in 3P contexts.

Related Website Sets allow several domains owned by one organization to declare their
relationship and relax cookie restrictions on interactions between them.

● Tip: Only add domains that are fully trusted to your RWS. For domains you own, but
don't completely control, use Service domains.

Beware of alternative "fixes" such as adding DNS CNAME mappings to third-party sites!

https://developers.google.com/privacy-sandbox/3pcd/related-website-sets-integration?_gl=1*1lfsfxy*_up*MQ..*_ga*OTcyMzAxMjIuMTcyMDQ2NTk2MA..*_ga_JPRHSQDH0G*MTcyMDQ2NTk1OS4xLjAuMTcyMDQ2NTk1OS4wLjAuMA..#related_website_sets_use_cases

61

Wrapping up

62

The web is moving towards more isolation by default through removing third-party
cookies and partitioning other browser state, fixing long-standing vulnerability classes.

Opt-in defense mechanisms (SameSite cookies, Cross-Origin Opener Policy, Fetch
Metadata headers) fill in gaps in the short term, are universally supported in all browsers.

Interesting work happening in W3C working groups (WebAppSec, PrivacyCG) to hash
out long-term behaviors for cookies and related APIs. Join us and/or file bugs!

6363

