Google

Stopping XS-Leaks at scale

Deploying RIP and COOP at Google

David Dworken

Background on rollouts at Google

e Challenges
o Hundreds of web services all owned by different teams
o Fast-paced environment with new services created daily
e Advantages
o Monorepo, which enables:
m One version policy: All services use the same version of web
frameworks
m Existing automation for splitting, testing, and sending
changes to hundreds of teams!"
o All web traffic goes through a centralized load balancer where we
can collect metrics

[1]: https://www.oreilly.com/library/view/software-engineering-at/9781492082781/ch22.html

Google

https://www.oreilly.com/library/view/software-engineering-at/9781492082781/ch22.html

Anatomy of a rollout at Google

Service
Service 2

Work closely with a
few high priority
products to roll out
enforcement

Change core
frameworks to enable
the security policy by

default

£ @

Enable enforcement for
services with no
violations

Enable a report-only
policy for all existing

services
:ve
Exen pt
[foc Exempt *F
Exempt jfoobar
/bar

Exempt endpoints with
reported violations

Resource Isolation Policy (RIP)

https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/

e Summary: Reject cross-site requests based on Fetch Metadata
headers
e Advantages
o Purely server-side policy, so the report-only mode can detect all
violations
e Challenges
o The web is noisy!
o Initially only supported by Chromium

Google

https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/

Cross-Origin-Resource-Policy (CORP)

https://xsleaks.dev/docs/defenses/opt-in/corp/

e Summary: Tell browser to block cross-origin/cross-site loading of a

resource
e At Google, we pair this with RIP:
o If an endpoint enforces RIP, it automatically sets 'CORP:
same-site’
o If an endpoint is exempted from RIP, it automatically sets 'CORP:

cross-origin’

Google

https://xsleaks.dev/docs/defenses/opt-in/corp/

Cross-Origin-Opener-Policy (COOP)

https://xsleaks.dev/docs/defenses/opt-in/coop/

e Summary: Restrict cross-origin interactions with popups
e Advantages:
o Has areport-only mode (Chrome only)
o Much less noisy than RIP. Most of the time, a reported violation is
a real problem, not just a weird client
e Challenges:
o Alot..

Google

https://xsleaks.dev/docs/defenses/opt-in/coop/

COOP Reporting

e Originally didn't have a report-only mode
e Added by Chrome in order to make COOP easier to roll out

e Two types of violation reports:
o Navigation reports
o Access reports
e Playground: https://coop-reporting-chrome-86.glitch.me/

Google

https://github.com/camillelamy/explainers/blob/master/coop_reporting.md
https://coop-reporting-chrome-86.glitch.me/

COOQOP Challenge: Reports are difficult to understand

e Many different types of violation reports that are
very easy to get confused
o Access from opener v/s access from openee
e Not always clear what violation needs what policy

_r . Corporate needs you to find the differences
tO IX It i between this picture and this picture.

e “Solved” with extensive internal documentation

! They're the same picture.

COOQOP Challenge: Reporting Gaps

e Certain violation scenarios don't trigger COOP reports, but when COOP
enforcement is enabled, things break
o Unique compared to RIP/CSP/COEP

site.com

COOP: same-origin site.com

Iframe of other.com

Iframe of other.com Popups S br i siben Popups

other.com other.com
postMessage(...) postMessage(...) COOP: same-origin

e When doing rollouts for hundreds of services, these scenarios are
surprisingly common (~5% of services run into these gaps)
e All service owners are asked if they fall into any of these three cases before

enabling enforcement -
oogle

COOP Challenge: Rollouts

COOP rollouts have to be done atomically for a given user

Scenario:

@)

@)

Suppose that example.com is rolling out COOP. It has it enabled for a

random sampling of 50% of requests.

example.com/foo L!

> example.com/bar
COOP: same-origin

| postMessage(...) >

example.com/foo and example.com/bar end up in different browsing

context groups! So postMessage doesn't work

Google

COOQOP Challenge: Atomic Rollouts

e Means that naively ramping up enforcement as a percent of requests doesn't

work!
e For authenticated services, we use experiments that bucket users based on

their session
e For unauthenticated services, we atomically enable enforcement for all users

at a specific time
o Increased impact of any breakages @

Google

COOP Challenge: Client-side navigation

e Client-side navigation means that if /foo needs a COOP policy of
same-origin-allow-popups, then every page that can client-side navigate to
/foo also needs to set same-origin-allow-popups

o Generally: If one endpoint needs to open a popup, the entire service
needs to relax COOP

e We use client-side navigation heavily

Google

COOQOP Challenge: COI Conflict

e Also conflicts with COl because sites that need
cross-origin isolation (currently) can’t set
same-origin-allow-popups

o Means that entire services (which may be
large) have to decide between
SharedArrayBuffer access and opening

popups

COOP Challenge: Very common violations

e Certain attribute accesses represent the vast majority of violations
o These attributes often are not the ones most concerning from an
XS-Leaks perspective
e Of the endpoints that need a COOP of "unsafe-none’:
o 65% need ‘unsafe-none’ because they need to expose the "closed
attribute
o 20% are for endpoints that need to use "postMessage’
o 4% are for endpoints that serve redirects
o 2% are for endpoints that need to have “focus()" called on them

o 0% are for endpoints that need to expose the ‘frames attribute Google

Current Status

e ~150 billion requests a day enforcing COOP and RIP

e The two most popular web frameworks at Google enforce COOP and RIP by
default | ™ —

= Is Report Only
75.00% — Is Enforcing

50.00%

25.00%

0.00%

s s s o s o s s s s s s s s s 00 s s D00 s 3 S0s 00 s s s 3 s s s 0 s s s 00 s 00 00 00 s 00 00 s s s
Qo e, Gy Gy G0y 0, 09,0 %oy R %0, Gy oy %oy 0 %o‘%vo‘%vo%o%,o%,o %of’eo%o%o‘b,o% "eooe Qo oy 0, G0y R0, G0 %, %}%/‘b)‘b}"e}%fe,
0,) 50, 80,5700, 0,85, 80,0, %00, %0, %, 6.5, 00, 00, 2, 0.7, 0 0 7, 0, 0 %0 0,0, 0, %0, 0, %005, %00, %00, %0, 0, 0,00, 0,00, 5, 20, e,

)
> %5 4 > % %o % %

100.00% S A AARA N A — Is Disabled
— Is Report Only
75.00% = Is Enforcing

50.00%

25.00%

0.00%

T T T T T T
Mar Apr May Jun Jul Aug Sep Oct Nov
2021

e Ongoing efforts to rollout COOP to other frameworks Google

Can we make COQP rollouts easier?

e COOP Reporting Gaps
o Same-origin policy prevents exposing that information, maybe we
could expose a subset of it?
m E.g. Areport saying that an iframe opened a popup
e Could we have a same-origin-allow-popups-and-postMessage-and-closed
o Oreven better. same-origin-allow-popups postMessage closed ...
o Would make it possible to deploy COOP for pages that need to use
postMessage
m Currently our entire login flow can't deploy COOP since it needs to
be opened in a popup and use postMessage

Google

Appendix: COOP Reporting Gaps

site.com Popups
P other.com
SEOR, COOP: same-origin

same-origin-allow-popups

Redirects

site.com
COOP: unsafe-none

site.com

COOP: same-origin site.com

Iframe of other.com
sandbox="allow-popups"

Popups Popups

Iframe of other.com /

other.com

other.com COOP: same-origin

postMessage(...) postMessage(...)

Appendix: Understanding COOP Reports

Access From Openee

This violation type means that a COOP page opened a cross-origin page that tried to access a field on its opener, e.g.
window.opener.field. One common way this can happen is if you open a popup that sends a message to your page.

m

postMessage(...)

site.com

COOP: same-origin other.com

This violation type can be fixed by setting same-origin-allow-popups onthe COOP page that opened the window.

Access To Openee

This violation type means that a COOP page opened a cross-origin page and accessed a field of that window. For
example, window.open(other_site).field. One common way this can happen is if you open a popup and send a

m

l\

message to it via postMessage.

site.com

COOP: same-origin other.com

postMessage(...)

This violation type can be fixed by setting same-origin-allow-popups onthe COOP page that opened the window.

Appendix: Understanding COOP Reports

Access From Opener

This violation type means that a page opened a cross-origin COOP page and tried to access a field on its opener, e.g.
window.open(other_site_with_coop).field. One common way this can happen is if you open a popup and send a

message to it via postMessage.
m

N

other.com

site.com COOP: same-origin

postMessage(...)

This violation type can be fixed by setting unsafe-none on the page that is being opened.

Access To Opener

This violation type means that a page opened a cross-origin COOP page that did window.opener.field.One common
way this can happen is if you open a popup that sends a message to your page.

m

postMessage(...)

other.com

site.com COOP: same-origin

This violation type can be fixed by setting unsafe-none on the page that is being opened.

Appendix: Understanding COOP Reports

Access From Other

This violation type means that a COOP page was accessed by a cross-origin page that doesn't have an opener or an
openee relationship with the COOP page. This can be thought of as a catchall category. One example of a way this kind of
report can be triggered is if a window reference is obtained via window.open('', 'name_of_window').

This violation type can be fixed by setting unsafe-none on the page that is being accessed.

Access To Other

This violation type means that a COOP page tried to access a field on another page that it doesn’t have an opener or an
openee relationship with. This can be thought of as a catchall category. One example of a way this kind of report can be
triggered is if a window reference is obtained via window.open('"', 'name_of_window").

This violation type can be fixed by setting unsafe-none on the page that is doing the access.

