
David Dworken

Stopping XS-Leaks at scale
Deploying RIP and COOP at Google



● Challenges
○ Hundreds of web services all owned by different teams 
○ Fast-paced environment with new services created daily 

● Advantages
○ Monorepo, which enables:

■ One version policy: All services use the same version of web 
frameworks

■ Existing automation for splitting, testing, and sending 
changes to hundreds of teams[1]

○ All web traffic goes through a centralized load balancer where we 
can collect metrics 

[1]: https://www.oreilly.com/library/view/software-engineering-at/9781492082781/ch22.html

Background on rollouts at Google

https://www.oreilly.com/library/view/software-engineering-at/9781492082781/ch22.html


Anatomy of a rollout at Google

Service 
1 Service 

2Service 
1

Work closely with a 
few high priority 

products to roll out 
enforcement

Change core 
frameworks to enable 
the security policy by 

default

Enable a report-only 
policy for all existing 

services 

Service 
1Exempt
/other

Exempt 
/foobar

Exempt 
/foobar

Exempt 
/foo Exempt 

/bar

Exempt endpoints with 
reported violations 

Enable enforcement for 
services with no 

violations 

Service 
1

Service 
1

Service 
1Service 

1 Service 
2Service 

1



● Summary: Reject cross-site requests based on Fetch Metadata 
headers

● Advantages
○ Purely server-side policy, so the report-only mode can detect all 

violations 
● Challenges

○ The web is noisy! 
○ Initially only supported by Chromium

Resource Isolation Policy (RIP)
https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/

https://xsleaks.dev/docs/defenses/isolation-policies/resource-isolation/


● Summary: Tell browser to block cross-origin/cross-site loading of a 
resource

● At Google, we pair this with RIP:
○ If an endpoint enforces RIP, it automatically sets `CORP: 

same-site`
○ If an endpoint is exempted from RIP, it automatically sets `CORP: 

cross-origin`

Cross-Origin-Resource-Policy (CORP)
https://xsleaks.dev/docs/defenses/opt-in/corp/

https://xsleaks.dev/docs/defenses/opt-in/corp/


● Summary: Restrict cross-origin interactions with popups 
● Advantages:

○ Has a report-only mode (Chrome only) 
○ Much less noisy than RIP. Most of the time, a reported violation is 

a real problem, not just a weird client 
● Challenges:

○ A lot… 

Cross-Origin-Opener-Policy (COOP)
https://xsleaks.dev/docs/defenses/opt-in/coop/

https://xsleaks.dev/docs/defenses/opt-in/coop/


● Originally didn’t have a report-only mode
● Added by Chrome in order to make COOP easier to roll out 
● Two types of violation reports:

○ Navigation reports
○ Access reports 

● Playground: https://coop-reporting-chrome-86.glitch.me/ 

COOP Reporting

https://github.com/camillelamy/explainers/blob/master/coop_reporting.md
https://coop-reporting-chrome-86.glitch.me/


● Many different types of violation reports that are 
very easy to get confused
○ Access from opener v/s access from openee

● Not always clear what violation needs what policy 
to fix it 

● “Solved” with extensive internal documentation

COOP Challenge: Reports are difficult to understand



● Certain violation scenarios don’t trigger COOP reports, but when COOP 
enforcement is enabled, things break
○ Unique compared to RIP/CSP/COEP

● When doing rollouts for hundreds of services, these scenarios are 
surprisingly common (~5% of services run into these gaps) 

● All service owners are asked if they fall into any of these three cases before 
enabling enforcement 

COOP Challenge: Reporting Gaps



● COOP rollouts have to be done atomically for a given user
● Scenario:

○ Suppose that example.com is rolling out COOP. It has it enabled for a 
random sampling of 50% of requests. 

○ example.com/foo and example.com/bar end up in different browsing 
context groups! So postMessage doesn’t work 

COOP Challenge: Rollouts 



● Means that naively ramping up enforcement as a percent of requests doesn’t 
work! 

● For authenticated services, we use experiments that bucket users based on 
their session

● For unauthenticated services, we atomically enable enforcement for all users 
at a specific time
○ Increased impact of any breakages 😨

COOP Challenge: Atomic Rollouts 



● Client-side navigation means that if /foo needs a COOP policy of 
same-origin-allow-popups, then every page that can client-side navigate to 
/foo also needs to set same-origin-allow-popups
○ Generally: If one endpoint needs to open a popup, the entire service 

needs to relax COOP 
● We use client-side navigation heavily 

COOP Challenge: Client-side navigation



● Also conflicts with COI because sites that need 
cross-origin isolation (currently) can’t set 
same-origin-allow-popups
○ Means that entire services (which may be 

large) have to decide between 
SharedArrayBuffer access and opening 
popups 

COOP Challenge: COI Conflict



● Certain attribute accesses represent the vast majority of violations
○ These attributes often are not the ones most concerning from an 

XS-Leaks perspective
● Of the endpoints that need a COOP of `unsafe-none`:

○ 65% need `unsafe-none` because they need to expose the `closed` 
attribute 

○ 20% are for endpoints that need to use `postMessage`
○ 4% are for endpoints that serve redirects 
○ 2% are for endpoints that need to have `focus()` called on them
○ … 
○ 0% are for endpoints that need to expose the `frames` attribute 

COOP Challenge: Very common violations



● ~150 billion requests a day enforcing COOP and RIP 
● The two most popular web frameworks at Google enforce COOP and RIP by 

default

● Ongoing efforts to rollout COOP to other frameworks 

Current Status



● COOP Reporting Gaps
○ Same-origin policy prevents exposing that information, maybe we 

could expose a subset of it?
■ E.g. A report saying that an iframe opened a popup

● Could we have a `same-origin-allow-popups-and-postMessage-and-closed`
○ Or even better: `same-origin-allow-popups postMessage closed …`
○ Would make it possible to deploy COOP for pages that need to use 

postMessage 
■ Currently our entire login flow can’t deploy COOP since it needs to 

be opened in a popup and use postMessage

Can we make COOP rollouts easier? 



Appendix: COOP Reporting Gaps



Appendix: Understanding COOP Reports 



Appendix: Understanding COOP Reports 



Appendix: Understanding COOP Reports 


